Acta Cryst. (1996). C52, 2463-2464

cis-Dichloro(triethylphosphine-*P*)[tris(2,6difluorophenyl)phosphite-*P*]platinum(II)

JOHN FAWCETT,^{a*} JOHN H. HOLLOWAY,^a Eric G. HOPE,^a Graham C. Saunders^a and Malcolm J. Atherton^b

^aDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, England, and ^bBNFL Fluorochemicals Ltd, Springfields, Salwick, Preston PR4 0XJ, England. E-mail: jxf@leicester.ac.uk

(Received 11 March 1996; accepted 30 May 1996)

Abstract

In cis-[PtCl₂(C₁₈H₉F₆O₃P)(C₆H₁₅P)], the Pt—P and Pt—Cl distances are comparable to those of the triphenylphosphite analogue, while the P—Pt—P angle is $ca 5^{\circ}$ larger.

Comment

It has been found that the presence of F atoms in the *ortho* positions of triphenylphosphite has a negligible electronic effect but a considerable steric effect on the properties of the phosphite and its transition metal complexes (Holloway *et al.*, 1993; Coleman *et al.*, 1995). A single-crystal X-ray diffraction study of *cis*-dichloro-(triethylphosphine-P)[tris(2, 6-difluorophenyl)phosphite-P]platinum(II), (1), confirms that there is a negligible difference between the electronic properties of the P atoms of triphenylphosphite and tris(2,6-difluorophenyl)phosphite.

The Pt—P1 distance of 2.1772 (14) Å in (1) (Fig. 1) is comparable to that of 2.182 (2) Å for the Pt—P(phosphite) distance of *cis*-dichloro(triethylphosphine)(triphenylphosphite)platinum(II) [(2); Cauldwell, Manojlovic-Muir & Muir, 1977]. The Pt— P(phosphine) [2.274 (2) *cf.* 2.269 (1) Å], Pt—Cl(*trans* to phosphite) [2.3248 (14) *cf.* 2.344 (1) Å] and Pt— Cl(*trans* to phosphine) [2.3616 (14) *cf.* 2.355 (2) Å] distances are similar for the fluorine-containing and perprotio complexes. It is thus evident that the greater bulk of the tris(2,6-difluorophenyl)phosphite ligand has no effect on the Pt—P and Pt—Cl distances. The P—Pt— P angle of $103.14(6)^{\circ}$ for compound (1) is, however, *ca* 5° greater than that of compound (2), indicative of the greater steric demands of the tris(2,6-difluorophenyl)-phosphite ligand.

Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme and 30% displacement ellipsoids. H atoms have been omitted for clarity.

The coordination about both P atoms is distorted tetrahedral. The Pt—P—O, O—P—O and P—O—C angles are comparable to those found in *trans*-dichloro-(triethylphosphine)[tris(2,6-difluorophenyl)phosphite]-platinum(II) (Coleman *et al.*, 1995). The Pt—P—O angles are slightly larger than those of the triphenyl-phosphite analogue, presumably due to the greater bulk of tris(2,6-difluorophenyl)phosphite. The phosphine P—C distances and Pt—P—C angles are comparable to those of the triphenylphosphite analogue, but the P—C distances are *ca* 0.04 Å shorter than for the *trans* isomer.

Experimental

The title complex was prepared by allowing a solution of trans-[PtCl₂{P(C₂H₅)₃}{P(O-2,6-C₆H₃F₂)₃}] (Coleman *et al.*, 1995) in acetone to stand at room temperature for several weeks. Evaporation of the solvent afforded colourless crystals of the *cis* isomer and pale yellow crystals of the *trans* isomer, which were separated manually. ¹H NMR (CDCl₃): δ 7.13 (*m*, 3H, *para*-H), 6.95 (*m*, 6H, *meta*-H), 2.29 (*m*, 6H, CH₂), 1.28 (*dt*, ³J_{PH} = 17.95, ³J_{HH} = 7.6 Hz, 9H, CH₃). ¹⁹F NMR (CDCl₃): δ -124.02 (*d*, ⁴J_{PF} = 5.5, ⁵J_{PtF} = 29.7 Hz). ³¹P{¹H}: δ 69.47 [*dm*, ²J_{PP} = 19.0 Hz, ¹J_{PtP} = 6389 Hz, P(OC₆H₃F₂)₃], 17.32 [*d*, ²J_{PF} = 19.0 Hz, ¹J_{PtP} = 3187 Hz, P(CH₂CH₃)₃]. FAB-MS (*m*/z) 802 (*M*⁺), 767 [(*M*-Cl)⁺].

$[PtCl_2(C_{18}H_9F_6O_3P)(C_6H_{15}P)]$

Crystal data	
$[PtCl_{2}(C_{18}H_{9}F_{6}O_{3}P)-(C_{6}H_{15}P)]$ $M_{r} = 802.36$ Monoclinic $P2_{1}/c$ a = 9.709 (2) Å b = 15.482 (2) Å c = 18.267 (3) Å $\beta = 96.20$ (1)° V = 2729.7 (8) Å ³ Z = 4 $D_{x} = 1.952$ Mg m ⁻³ D_{m} not measured	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from reflections $\theta = 5.2-12.9^{\circ}$ $\mu = 5.520$ mm ⁻¹ T = 293 (2) K Block $0.53 \times 0.26 \times 0.16$ m Colourless

Data collection

Siemens P4 diffractometer	3349 observed reflections
ω scans	$[I>2\sigma(I)]$
Absorption correction:	$R_{\rm int} = 0.0297$
semi-empirical from	$\theta_{\rm max} = 23.50^{\circ}$
ψ scans (XEMP in	$h = -1 \rightarrow 10$
SHELXTL/PC; Sheldrick,	$k = -1 \rightarrow 17$
1990)	$l = -20 \rightarrow 20$
$T_{\min} = 0.169, T_{\max} =$	3 standard reflections
0.307	monitored every 100
5259 measured reflections	reflections
4036 independent reflections	intensity decay: <2%
-	

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.262$
R(F) = 0.0293	$\Delta \rho_{\rm max} = 0.602 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.0669$	$\Delta \rho_{\rm min}$ = -0.584 e Å ⁻³
S = 1.043	Extinction correction: none
4035 reflections	Atomic scattering factors
352 parameters	from International Tables
H atoms riding with refined	for Crystallography (1992,
Uiso	Vol. C, Tables 4.2.6.8 and
$w = 1/[\sigma^2(F_o^2) + (0.0238P)^2]$	6.1.1.4)
+ 0.0164 <i>P</i>]	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	х	у	z	U_{eq}
Pt 1	0.19555 (2)	0.187793 (13)	0.193358 (11)	0.01968 (8)
P1	0.32510(14)	0.19229 (9)	0.29829 (7)	0.0192 (3)
P2	0.3516 (2)	0.16848 (10)	0.11047 (8)	0.0260 (4)
C11	0.0306 (2)	0.17799 (10)	0.09153 (8)	0.0356 (4)
Cl2	0.01502 (14)	0.21799 (10)	0.26642 (8)	0.0271 (3)
Fl	0.6713 (4)	0.2919 (2)	0.3088 (2)	0.0467 (10)
F2	0.5037 (4)	0.0431 (2)	0.4150(2)	0.0408 (9)
F3	0.3367 (4)	-0.0017 (2)	0.2775 (2)	0.0400 (9)
F4	0.0615 (4)	0.1232 (2)	0.4424 (2)	0.0395 (9)
F5	0.1241 (4)	0.3503 (3)	0.4053 (2)	0.0560 (11)
F6	0.4432 (4)	0.3698 (3)	0.2331 (2)	0.0516 (11)
01	0.4834 (4)	0.1630 (2)	0.3003 (2)	0.0236 (9)
02	0.2738 (4)	0.1374 (2)	0.3641 (2)	0.0212 (9)
03	0.3414 (4)	0.2817 (2)	0.3425 (2)	0.0266 (9)
CI	0.3313 (7)	0.2513 (4)	0.0382 (3)	0.0317 (15)
C2	0.3529 (8)	0.3436 (4)	0.0657 (4)	0.045 (2)
C3	0.5344 (6)	0.1690 (4)	0.1433 (3)	0.036 (2)
C4	0.6332 (8)	0.1555 (6)	0.0849 (4)	0.068 (3)
C5	0.3233 (7)	0.0688 (4)	0.0585 (3)	0.037 (2)

	C6	0.3440 (10)	-0.0132 (4)	0.1023 (4)	0.065 (3)
	CII	0.5806 (6)	0.1706 (4)	0.3625 (3)	0.0261 (14)
	C12	0.6786 (6)	0.2357 (4)	0.3651 (3)	0.0327 (15)
	C13	0.7821 (6)	0.2426 (4)	0.4221 (4)	0.040 (2)
77	C14	0.7860 (7)	0.1843 (5)	0.4785 (4)	0.044 (2)
21	C15	0.6939 (6)	0.1175 (4)	0.4773 (3)	0.035 (2)
	C16	0.5929 (6)	0.1102 (4)	0.4182 (3)	0.0272 (14)
	C21	0.1971 (6)	0.0624 (4)	0.3585 (3)	0.0225 (13)
	C22	0.2280(6)	-0.0080 (4)	0.3164 (3)	0.0286 (14)
	C23	0.1500 (7)	-0.0827 (4)	0.3146(3)	0.039 (2)
	C24	0.0390 (7)	-0.0868 (4)	0.3562 (4)	0.042 (2)
	C25	0.0074 (7)	-0.0179 (4)	0.3994 (3)	0.035 (2)
nm	C26	0.0863 (6)	0.0554 (4)	0.3998 (3)	0.0289(14)
	C31	0.2823 (6)	0.3592 (4)	0.3185 (3)	0.0263 (14)
	C32	0.1766 (7)	0.3951 (4)	0.3521 (4)	0.039 (2)
	C33	0.1255 (8)	0.4758 (5)	0.3325 (5)	0.060 (2)
	C34	0.1834 (10)	0.5193 (5)	0.2770 (5)	0.070 (3)
	C35	0.2897 (9)	0.4854 (5)	0.2420 (5)	0.063 (3)
	C36	0.3377 (7)	0.4059 (4)	0.2643 (4)	0.039 (2)

Table 2. Selected geometric parameters (Å, °)

Pt1-P1	2.1772 (14)	P2—C3	1.812(6)
Pt1—P2	2.274 (2)	P2C5	1.816(6)
Pt1—Cl1	2.3248 (14)	P2-C1	1.835 (6)
Pt1-Cl2	2.3616 (14)	01—C11	1.401 (6)
P1	1.596 (4)	02—C21	1.376 (6)
P1-01	1.599 (4)	O3—C31	1.381 (7)
P103	1.602 (4)		
PI-PtI-P2	103.14 (6)	O2-P1-Pt1	116.65 (15)
P1—Pt1—Cl1	171.52 (5)	01—P1—Pt1	118.28 (15)
P2—Pt1—Cl1	84.81 (6)	O3-P1-Pt1	119.2 (2)
P1-Pt1-Cl2	83.66 (5)	C3—P2—Pt1	118.6(2)
P2-Pt1-Cl2	172.16 (5)	C5—P2—Pt1	112.7 (2)
CII-Pt1-CI2	88.61 (5)	C1—P2—Pt1	111.1 (2)
02-P1-01	102.0 (2)	C11—01—PI	123.9(3)
02—P1—O3	95.9 (2)	C21-02-PI	127.1 (3)
01—P1—O3	101.0 (2)	C31-O3-P1	125.1 (3)

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXTL/PC.

The support of BNFL Fluorochemicals Ltd is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1103). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Cauldwell, A. N., Manojlovic-Muir, L. & Muir, K. W. (1977). J. Chem. Soc. Dalton Trans. pp. 2265-2269.
- Coleman, K. S., Holloway, J. H., Hope, E. G., Russell, D. R., Saunders, G. C. & Atherton, M. J. (1995). Polyhedron, 14, 2107-2113.
- Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Holloway, J. H., Hope, E. G., Jones, K., Saunders, G. C., Fawcett, J., Reeves, N., Russell, D. R. & Atherton, M. J. (1993). Polyhedron, 12, 2681-2685.
- Sheldrick, G. M. (1990). SHELXTLIPC. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.